Realschule Bayern
Mathematik II/III
+ Basiswissen mit Übungen
+ Aktuelle Original-Prüfung
+ Aufgaben im Stil der Prüfung
Inhalt

Vorwort
Hinweise zur Prüfung

Training Grundwissen

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grundwissen 5.–8. Klasse</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Rechnen mit rationalen Zahlen – Grundrechenarten und Bruchrechnen</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Kürzen und Erweitern von Brüchen</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Addition und Subtraktion von Brüchen</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Multiplikation und Division von Brüchen und Bruchtermen</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Brüche und Variablen</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Potenzen</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Potenzgesetze</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Termumformungen</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Summen- und Produkttermen</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Binomische Formeln</td>
<td>16</td>
</tr>
<tr>
<td>1.4</td>
<td>Extremwertbestimmung bei quadratischen Termen</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>Lineare Gleichungen und Ungleichungen</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>Bruchgleichungen</td>
<td>24</td>
</tr>
<tr>
<td>1.7</td>
<td>Prozentrechnung</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Berechnungen</td>
<td>26</td>
</tr>
<tr>
<td>1.8</td>
<td>Vektoren</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Regel „Spitze minus Fuß“</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Berechnungen mithilfe von Vektoren</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Mittelpunktsberechnung einer Strecke</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Vektoraddition – Vektorketten</td>
<td>31</td>
</tr>
<tr>
<td>1.9</td>
<td>Dreiecke</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Eigenschaften beliebiger Dreiecke</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Besondere Dreiecke</td>
<td>35</td>
</tr>
<tr>
<td>1.10</td>
<td>Vierecke</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Eigenschaften beliebiger Vierecke</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Besondere Vierecke</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Grundwissen 9. Klasse</td>
<td>39</td>
</tr>
<tr>
<td>2.1</td>
<td>Lineare Funktionen</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Direkte Proportionalität</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Ursprungsgeraden: (y = m \cdot x)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Zeichnen von Ursprungsgeraden</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Geraden in beliebiger Lage – Die Normalform: (y = mx + t)</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Berechnung der Geradengleichung mithilfe zweier Punkte</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Zeichnen von Geraden</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Punkt-Steigungs-Form: (y = m(x-x_p) + y_p)</td>
<td>46</td>
</tr>
</tbody>
</table>
Parallele und orthogonale Geraden .. 47
Normalform, Punkt-Steigungs-Form und allgemeine Form 49
2.2 Lineare Gleichungssysteme ... 51
Grafisches Lösungsverfahren .. 51
Rechnerische Lösungsverfahren .. 53
2.3 Reelle Zahlen ... 57
Die Quadratwurzel .. 57
Irrationale Zahlen ... 57
Die Menge der reellen Zahlen R .. 57
Rechnen mit Wurzeltermen .. 58
2.4 Flächeninhalt ebener Figuren .. 61
Dreiecke .. 61
Vierecke ... 63
Flächenberechnung mithilfe von Vektoren im Koordinatensystem .. 65
Funktionale Abhängigkeiten – Veränderung von ebenen Figuren .. 67
2.5 Vierstreckensätze .. 73
2.6 Flächensätze am rechtwinkligen Dreieck 77
Der Kathetensatz ... 78
Der Höhensatz .. 79
Der Satz des Pythagoras .. 80
Folgerungen aus dem Satz des Pythagoras 82
3.1 Quadratische Funktionen .. 84
Die Funktion mit der Gleichung \(y = x^2 \) 84
Funktionen mit Gleichungen der Form \(y = a \cdot x^2 \) 85
Die Scheitelform: \(y = a \cdot (x - x_S)^2 + y_S \) 87
Von der Scheitelform zur allgemeinen Form 88
Von der allgemeinen Form zur Scheitelform 88
Berechnen von Parabelgleichungen 89
Extremwerte ... 91
3.2 Weitere Funktionen ... 95
Funktionen der indirekten Proportionalität (Hyperbeln) 95
Exponentialfunktionen .. 97
3.3 Quadratische Gleichungen .. 101
Diskriminante und Lösungsformel .. 103
Nullstellen von Parabeln .. 105
Schnitt von Parabel und Gerade ... 106
Schnitt von Parabel mit Parabel – System quadratischer Gleichungen .. 108
3.4 Berechnungen am Kreis .. 113
Flächeninhalt und Umfang eines Kreises 113
Kreisteile – Kreissektor und Kreisbogen 114
Das Kreissegment .. 116
3.5 Trigonometrie .. 117
Sinus, Kosinus und Tangens am Einheitskreis 117
Sinus, Kosinus und Tangens im rechtwinkligen Dreieck 117
Sinussatz und Kosinussatz .. 124
3.6 Raumgeometrie ... 129
 Zeichnen von Schrägbildern ... 129
 Prisma .. 131
 Pyramide ... 134
 Zylinder .. 140
 Kegel ... 142
 Kugel .. 147

Komplexe Aufgaben 151
 Quadratische Funktionen .. 153
 Ebene Geometrie .. 155
 Raumgeometrie ... 158

Aufgaben im Stil der Prüfung 161
 Teil A .. 163
 Teil B .. 165

Original-Abschlussprüfung 167
 Abschlussprüfung 2019 .. 2019-1
 Teil A .. 2019-1
 Teil B .. 2019-4

Dieses Buch ist in zwei Versionen erhältlich: mit und ohne ActiveBook. Hast du die Ausgabe mit ActiveBook (91511ML) erworben, kannst du mit dem Interaktiven Training online mit vielen zusätzlichen interaktiven Aufgaben zu allen prüfung-relevanten Kompetenzbereichen trainieren.

Die interaktiven Aufgaben sind im Buch mit diesem Button gekennzeichnet. Am besten gleich ausprobieren!

Autoren: Markus Hochholzer, Markus Schmidl
Vorwort

Liebe Schülerin, lieber Schüler,
mit diesem Buch kannst du dich langfristig und nachhaltig auf die Abschlussprüfung Mathematik vorbereiten. Das Buch ist so konzipiert, dass es bereits zu Beginn der 9. Klasse zur Vorbereitung auf Schulaufgaben und zur langfristigen Vorbereitung auf die Abschlussprüfung verwendet werden kann.

Das Buch besteht aus sechs Teilen:

- **Grundwissen 5.–8. Klasse**
 Hier kannst du nachschlagen, wenn du in einem bestimmten Bereich aus den früheren Schuljahren Probleme hast. Die prüfungsrelevanten Inhalte sind mit Beispielen erklärt.

- **Grundwissen 9. Klasse**

- **Grundwissen 10. Klasse**

- **Komplexe Aufgaben**
 Dieses Kapitel enthält Aufgaben, die nach den Themenbereichen der Abschlussprüfung geordnet sind. Sie greifen auch auf das Grundwissen der vorhergehenden Jahrgangsstufen zurück, das für die Abschlussprüfung relevant ist.

- **Aufgaben im Stil der Prüfung**
 Dieses Kapitel enthält Aufgaben, die wie in der Abschlussprüfung zusammengestellt und bepunktet sind. So kannst du prüfen, ob du fit bist für die Abschlussprüfung in Mathematik. Der Umfang und Schwierigkeitsgrad der Aufgaben entspricht jeweils den einzelnen Prüfungsteilen der Abschlussprüfung.

- **Original-Abschlussprüfung 2019**

Wir wünschen dir viel Erfolg in der Prüfung!

Markus Hochholzer
Markus Schmidl
1 Grundwissen 5.–8. Klasse

1.1 Rechnen mit rationalen Zahlen – Grundrechenarten und Bruchrechnen

Kürzen und Erweitern von Brüchen

Die Menge der rationalen Zahlen \(\mathbb{Q} \) erhält man, wenn man die Menge der ganzen Zahlen \(\mathbb{Z} \) um die Bruchzahlen (Brüche) erweitert. Ein (gewöhnlicher) Bruch ist definiert als Quotient zweier ganzer Zahlen.

\[
\frac{a}{b} \quad \text{Bruchstrich} \quad \frac{a}{b} \quad \text{Bruch}
\]

\(a \in \mathbb{Z}; \ b \neq 0 \)

Beachte: Die Division durch 0 ist verboten!

Hilfreiche Vereinfachungen beim Rechnen mit Brüchen ergeben sich oft durch das Kürzen und Erweitern der Brüche.

- Man **erweitert** einen Bruch, indem man Zähler und Nenner mit der gleichen Zahl (ungleich null) multipliziert.
 \[\frac{a}{b} = \frac{a \cdot c}{b \cdot c} \quad \text{Erweitern mit } c \quad (a \in \mathbb{Z}; \ b, c \neq 0) \]

- Man **kürzt** einen Bruch, indem man Zähler und Nenner durch die gleiche Zahl (ungleich null) dividiert.
 \[\frac{a}{b} = \frac{a : c}{b : c} \quad \text{Kürzen mit } c \quad (a \in \mathbb{Z}; \ b, c \neq 0) \]

Sind Zähler und Nenner eines Bruchs teilerfremd, ist der Bruch **vollständig gekürzt**.

Durch Erweitern und Kürzen erhält man einen zum ursprünglichen Bruch **wertgleichen** Bruch.

Beispiele

1. \[\frac{7}{4} = \frac{7 \times 25}{4 \times 25} = \frac{175}{100} = \frac{75}{100} \quad \text{Erweitern mit } 25 \]
2. \[\frac{51}{85} = \frac{51 : 17}{85 : 17} = \frac{3}{5} \quad \text{Kürzen mit } 17 \]

Aufgaben

Fülle die Lücken durch Kürzen oder Erweitern.

a) \[\frac{3}{5} \times \underline{24} = \underline{12} \]

b) \[\frac{49}{28} = \underline{4} = \frac{6}{1} \]

c) \[\frac{33ab}{121a} = \underline{3b} = \underline{88c^2} \]

d) \[\frac{12x^2y}{16x} = \underline{3xy} = \underline{96x^2y} \]
Kürze so weit wie möglich.

a) \(\frac{36}{90} \)

b) \(\frac{55x^3y^2}{220x^5y} \)

c) \(\frac{95 \cdot 26 \cdot 55}{143 \cdot 25 \cdot 76} \)

d) \(\frac{5(a-b)^2}{0.5(a-b)(a+b)} \)

Addition und Subtraktion von Brüchen

\[\frac{5}{6} + \frac{3}{8} \]

Beispiel

Bestimme den Hauptnenner und erweise die Brüche auf ihn.

\[\frac{5 \cdot 4}{6 \cdot 4} + \frac{3 \cdot 3}{8 \cdot 3} \]

HN: 24

Addiere bzw. subtrahiere die jetzt gleichnamigen Brüche.

\[\frac{20}{24} + \frac{9}{24} \]

\[\frac{-20 + 9}{24} \]

\[\frac{-11}{24} \]

Aufgabe

Bestimme den Hauptnenner und berechne.

a) \(\frac{11}{12} - \frac{2}{9} + \frac{2}{3} \)

b) \(\left(\frac{27}{4} - \frac{4}{3} \right) + \left(\frac{11}{16} - \frac{5}{8} \right) \)

c) \(12 \cdot \left(\frac{4}{5} + \frac{3}{2} \right) + 17 \frac{1}{5} \)

d) \(\frac{4}{3} b + \frac{1}{64} a^3 - \frac{1a^4}{2a} + \frac{1b}{5} - \frac{11}{13} \)
Multiplikation und Division von Brüchen und Bruchtermen

Merke

Ein Bruch wird mit einer Zahl multipliziert, indem man den Zähler mit der Zahl multipliziert und den **Nenner beibehält**.

\[
\frac{a}{b} \cdot c = \frac{a \cdot c}{b} \quad (a, c \in \mathbb{Z}; b \in \mathbb{Z} \setminus \{0\})
\]

Beispiel

\[
\frac{3}{4} \cdot 5 = \frac{3 \cdot 5}{4} = \frac{15}{4} = 3 \frac{3}{4}
\]

Formen im Endergebnis den unechten Bruch in eine gemischte Zahl um.

Merke

Brüche werden multipliziert, indem man **Zähler mit Zähler** und **Nenner mit Nenner** multipliziert:

\[
\frac{a}{c} \cdot \frac{b}{d} = \frac{a \cdot b}{c \cdot d} \quad (a, b \in \mathbb{Z}; c, d \in \mathbb{Z} \setminus \{0\})
\]

Beispiel

\[
2 \frac{1}{4} \cdot 7 \frac{2}{3} = \frac{9}{4} \cdot \frac{23}{3}
\]

Gemischte Zahlen formt man zuerst in echte Brüche um.

\[
= \frac{9 \cdot 23}{4 \cdot 3}
\]

Das rechtzeitige Kürzen nicht vergessen!

\[
= \frac{3 \cdot 23}{4 \cdot 1}
\]

\[
= \frac{69}{4}
\]

\[
= 17 \frac{1}{4}
\]

Merke

Brüche werden dividiert, indem man den ersten Bruch mit dem **Kehrbruch** des zweiten Bruchs multipliziert:

\[
\frac{a}{c} : \frac{b}{d} = \frac{a \cdot d}{c \cdot b} \quad (a \in \mathbb{Z}; b, c, d \in \mathbb{Z} \setminus \{0\})
\]

Beispiel

\[
11 \frac{3}{7} : 2 \frac{12}{35} = \frac{80}{7} : \frac{82}{35}
\]

Gemischte Zahlen werden vor der Division in unechte Brüche umgeformt.

\[
= \frac{80}{7} : \frac{82}{35}
\]

Multiplikation mit dem Kehrbruch

\[
= \frac{80}{7} \cdot \frac{35}{82}
\]

\[
= \frac{80 \cdot 40}{7 \cdot 82}
\]

\[
= \frac{35}{1}
\]

\[
= \frac{200}{41}
\]

\[
= 4 \frac{36}{41}
\]
Fasse zusammen und kürze so weit wie möglich.

a) \(\left(\frac{2}{3} \right) \cdot \left(\frac{2}{3} \right) \)

b) \(\left(\frac{1}{3} + \frac{3}{4} \right) \cdot 7 - \frac{2}{5} \cdot \left(\frac{4}{3} - \frac{5}{12} \right) \)

c) \(\frac{5}{3} \cdot \left(\frac{3}{4} - \frac{7}{9} \right) \)

d) \(\left(\frac{6}{4} + \frac{1}{4} \cdot \frac{1}{2} \right) \cdot \left(\frac{28}{2} - \frac{10}{2} \cdot \frac{1}{2} \right) \)

Brüche und Variablen

Es gelten folgende Vereinfachungen:

\[a = \frac{1}{a} \quad \text{und} \quad \frac{a + x}{a} = \frac{a + x}{x} = 1 + \frac{x}{a} \quad a \in \mathbb{Z} \setminus \{0\} \]

aber:

\[\frac{a}{a + x} \neq \frac{a}{a} = 1 \]

Beispiele

1. \(\frac{x + x}{4} = \frac{2x}{20} = \frac{6x}{20} = \frac{3x}{10} = \frac{3}{x} \)

2. \(\frac{5 + t}{5} = \frac{5}{5} + \frac{t}{5} = 1 + \frac{1}{t} \)

Aufgabe 5

Fasse wie im Beispiel zusammen und kürze so weit wie möglich.

a) \(\frac{y}{3} + \frac{y}{21} \)

b) \(\frac{3}{x} - \frac{4}{4x} \)

c) \(\frac{3 + x}{3} + \frac{3 - x}{3} \)

d) \(\frac{3 + x}{3} - \frac{3 - x}{3} \)

e) \(\frac{3}{4} + \frac{3x}{8} \)

f) \(\frac{2}{x} \cdot \frac{3x}{4} \cdot \frac{y}{5} \cdot \frac{10}{y} \)

1.2 Potenzen

Die Potenzschreibweise ist die abgekürzte Schreibweise für die Multiplikation gleicher Faktoren.

\[a^b = \underbrace{a \cdot a \cdot \ldots \cdot a}_{b\text{-mal}} \]

Die Zahl, die sich nach dem Ausmultiplizieren einer Potenz ergibt, heißt Potenzwert.

Beispiele

1. \(3 \cdot 3 \cdot 3 \cdot 3 = 3^4 \)
 Die Basis 3 wird 4-mal mit sich selbst multipliziert.
Teil A

Aufgabe A 1

A 1.0 Pia möchte einen Flugdrachen bauen. Dazu erstellt sie nebenstehende Skizze eines Drachenvierecks ABCD mit der Symmetrieachse AC und dem Diagonalenschnittpunkt M.

Es gilt:
\[AB = 95 \text{ cm}; \quad AC = 150 \text{ cm}; \quad BC = 75 \text{ cm}. \]

Runden Sie im Folgenden auf Ganze.

A 1.1 Zeigen Sie rechnerisch, dass für das Maß des Winkels ACB gilt:
\[\angle ACB = 32^\circ. \]

A 1.2 Berechnen Sie die Länge der Diagonale [BD] und den Flächeninhalt A des Drachenvierecks ABCD.

[Ergebnis: \(BD = 79 \text{ cm} \)]

Kreuzen Sie an, um wie viel Prozent sich der Flächeninhalt dadurch verringert.

☐ 25 % ☐ 33 % ☐ 50 % ☐ 67 %
Aufgabe A 2

A 2.0 Gegeben sind die Parabeln \(p_1 \) mit der Gleichung \(y = 0,4x^2 - 1,8x - 4 \) und \(p_2 \) mit der Gleichung \(y = -0,2x^2 + 1,5x + 1 \) \((G = \mathbb{R} \times \mathbb{R})\).

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Punkte \(B_n(x|0,4x^2 - 1,8x - 4) \) auf \(p_1 \) und Punkte \(C_n(x|-0,2x^2 + 1,5x + 1) \) auf \(p_2 \) haben dieselbe Abszisse \(x \). Sie sind zusammen mit \(A(0|1) \) für \(x \in]0; 6,74[\) Eckpunkte von Dreiecken \(AB_nC_n \).

Zeichnen Sie das Dreieck \(AB_1C_1 \) für \(x = 3 \) in das Koordinatensystem zu A 2.0 ein.

Zeigen Sie sodann, dass für die Länge der Strecken \([B_nC_n]\) in Abhängigkeit von der Abszisse \(x \) der Punkte \(B_n \) gilt:
\[B_nC_n(x) = (-0,6x^2 + 3,3x + 5) \text{ LE}. \]

A 2.2 Begründen Sie, weshalb es unter den Dreiecken \(AB_nC_n \) kein Dreieck \(AB_0C_0 \) gibt, dessen Seite \([B_0C_0]\) eine Länge von 10 LE besitzt.

A 2.3 Die Mittelpunkte \(M_n \) der Seiten \([B_nC_n]\) haben dieselbe Abszisse \(x \) wie die Punkte \(B_n \).

Zeigen Sie, dass für die \(y \)-Koordinate \(y_{M_n} \) der Punkte \(M_n \) gilt:
\[y_{M_n} = 0,1x^2 - 0,15x - 1,5. \]

A 2.4 Das Dreieck \(AB_2C_2 \) ist gleichschenklig mit der Basis \([B_2C_2]\).

Berechnen Sie die \(x \)-Koordinate des Punktes \(M_2 \).
© STARK Verlag
www.stark-verlag.de
info@stark-verlag.de

Der Datenbestand der STARK Verlag GmbH ist urheberrechtlich international geschützt. Kein Teil dieser Daten darf ohne Zustimmung des Rechteinhabers in irgendeiner Form verwertet werden.